
Mathematical Formulations for the
Balanced Vertex k-Separator Problem

Denis Cornaz∗, Fabio Furini∗, Mathieu Lacroix†, Enrico Malaguti‡, A. Ridha Mahjoub∗ and Sébastien Martin§
∗ LAMSADE, Université Paris-Dauphine

Place du Maréchal de Lattre de Tassigny, 75775 Paris, France
Email: denis.cornaz@dauphine.fr, fabio.furini@dauphine.fr, mahjoub@lamsade.dauphine.fr

† LIPN, Université Paris 13
99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

Email: mathieu.lacroix@lipn.univ-paris13.fr
‡ DEI, Università di Bologna

Viale Risorgimento 2, 40136 Bologna, Italy
Email: enrico.malaguti@unibo.it
§ LCOMS, Université de Lorraine
Ile du Saulcy, 57045 Metz cedex

Email: sebastien.martin@univ-lorraine.fr

Abstract—Given an indirected graph G = (V,E), a Vertex
k-Separator is a subset of the vertex set V such that, when the
separator is removed from the graph, the remaining vertices can
be partitioned into k subsets that are pairwise edge-disconnected.
In this paper we focus on the Balanced Vertex k-Separator
Problem, i.e., the problem of finding a minimum cardinality
separator such that the sizes of the resulting disconnected subsets
are balanced. We present a compact Integer Linear Programming
formulation for the problem, and present a polyhedral study
of the associated polytope. We also present an Exponential-
Size formulation, for which we derive a column generation
and a branching scheme. Preliminary computational results are
reported comparing the performance of the two formulations on
a set of benchmark instances.

I. INTRODUCTION

Graph partitioning (GP) is a fundamental family of prob-
lems with applications in many areas. For this, it has received
within the past few years a great attention from both theoretical
and practical points of view. The graph partitioning problems
for an undirected graph G = (V,E) ask for a partition of the
vertex set V into pairwise disjoint subsets with some additional
properties. For instance, given a positivie integer k, the k-way
partition problem consists in partitioning the vertex set into k
elements while minimizing the number of edges whose ends
belong to different elements of the partition. In the k-terminal
way version, k vertices are also given and each element of the
searched partition must contain one of these vertices (terminal).
Important classes of graph partitioning problems are the ones
taking into consideration the equity and the uniformity of the
subsets of vertices. They include the problem of partitioning
the graph G into connected components of about the same size
or the problem of finding a partition with an element of a fixed
size. The GP problem has important applications particularly
in parallel computing, scheduling in multi-processor systems,
data analysis, risk management of energy and social networks,
clustering and detection of cliques in social, pathological
and biological networks, image processing and VLSI physical

design (see, e.g., [2], [13]). The GP problems related to these
areas have been widely studied in the literature, but typically
the developed algorithms try to find heuristic or approximated
solutions. Most exact methods are restricted to the bipartization
case, and rely on the branch-and-bound framework.

Another well-known family of problems are the Vertex k-
separator problems. Given a simple undirected graph G =
(V,E) a Vertex k-Separator (VKS) in G, for k ≥ 2, is a
subset of vertices V0 ⊆ V such that V \ V0 can be partitioned
into k subsets V1, ..., Vk that are pairwise disconnected, i.e.,
there is no edge between two subsets Vi and Vj for all
i ̸= j ∈ {1, . . . , k}. If the cardinality of each subset Vi,
i ∈ {1, . . . , k}, is larger than or equal to an integer b(n), then
V0 is called a Cardinality Constraint VKS (MCVKS) [1],[3],[4].
If the difference of cardinality between all pairs of subsets Vi,
Vj , i ̸= j ∈ {1, ..., k}, is bounded by an integer q, then V0 is
called a Balanced VKS (BVKS). The CCVKS (resp. BVKS)
Problem (CCVKSP) (resp. (BVKSP)) consists in finding a
CCVKS (resp. BVKS) of minimum cardinality. Both problems
are NP-hard in general.

The BVKSP has interesting applications in many fields, for
example in parallel simulation of physical movements. The
movement of a physical system (electric circuit, motor for
example) can be modeled by a differential algebraic equation
system. To solve such a system using a parallel algorithm, it is
necessary to decompose the associated Jacobian matrix. This
consists in determining a minimum group of variables (called
interface variables) whose removal allows to reorganize the rest
of the Jacobian into k (diagonal) blocks. In other words, the
remaining variables can be divided into k subgroups with no
interaction between the elements of the different groups. The
variables of the same block lead to a subproblem that is then
treated by a processor. Minimizing the number of interface
variables allows maximum reduction of the interaction time
between the different processors and, accordingly, energy and
computing time savings. This problem therefore boils down
to the BVKSP in an appropriate graph associated with the978-1-4799-6773-5/14/$31.00 c⃝2014 IEEE

Jacobian matrix of the system.

The aim of this paper is to provide exact formulations
for the BVKSP, as well as efficient approaches for solving
it. In Section II, we provide a compact formulation and
present a polyhedral study of the associated polytope. Then,
in Section III, we present a formulation with an exponential
number of variables but a polynomial number of constraints.
We also give a column generation scheme to solve the linear
relaxation and prove the effectiveness of this approach by
showing that the subproblem is polynomial-time solvable.
Section IV reports the preliminary experimental results we
obtain by solving the two formulations, the first one by a
branch-and-bound algorithm and the second by a branch-and-
price algorithm. The rest of this introduction is devoted to
notation and definitions.

Let K denote the set of integers {1, ..., k}. Given a simple
undirected graph G = (V,E) with |V | = n and |E| = m, for
an edge uv ∈ E, we say that u and v are neighbors. Then,
the neighborhood of a vertex w ∈ W is defined as follows:
N(w) = {w′ | w′ ∈ V,ww′ ∈ E}. We extend this notion
to a set of vertices and define the neighborhood of W by
N(W) =

∪
w∈W N(w) \ W , where W ⊆ V . We denote by

Ñ(W) the set W ∪N(W). For all v ∈ V , we denote by N̄ ′(v)
the set of vertices in V \ {v} such that they are not adjacent
to v. N̄ ′(v) = V \ (N(v) ∪ {v}).

II. COMPACT INTEGER LINEAR PROGRAMMING
FORMULATION

Consider a simple undirected graph G = (V,E) and two
integers k and q. For all vertices v ∈ V and for all integers
i ∈ K, let us associate a binary variable xi

v which takes 1 if the
vertex v is in Vi, and 0 otherwise. Remark that if

∑
i∈K xi

v = 0
then the vertex v is in V0.

The BVKSP is equivalent to the following integer linear
program (P).

max
∑
i∈K

∑
v∈V

xi
v (1)∑

i∈K

xi
v ≤ 1 ∀ v ∈ V, (2)

xi
u + xj

v ≤ 1 ∀ i ̸= j ∈ K, ∀ uv ∈ E, (3)∑
v∈V

(xi
v − xj

v) ≤ q ∀ i ̸= j ∈ K, (4)

xi
v ≥ 0 ∀ i ∈ K, ∀ v ∈ V, (5)

xi
v ∈ {0, 1} ∀ i ∈ K, ∀ v ∈ V. (6)

Inequalities (2) states that vertex v cannot be assigned to both
subsets Vi, Vj , where i ̸= j ∈ K. Inequalities (3) prevent
the ends of any edge to be assigned one to Vi, the other to Vj

where Vi, Vj , i ̸= j ∈ K. Inequalities (4) ensure the maximum
unbalance between the cardinality of all subsets Vi, i ∈ K
cannot exceed q.

The convex hull associated with the program (P), defined
as

P (G, k, q) = conv({x ∈ {0, 1}kn| x satisfies (2) − (5)}).

In the following, we directly give different propositions.

Proposition 1: P (G, k, q) is full dimensional if q > 0.

Proposition 2: Inequalities (5) define facets of P (G, k, q).

Proposition 3: The inequality (4), associated with v ∈ V ,
defines a facet of P (G, k, q) if and only if either q > 1 or for
all edges uv ∈ E, there exists in V \Ñ({u, v}) an independent
set of cardinality greater or equal to k − 1.

Inequalities (3) do not define facet. In the following propo-
sition, we present a new family of valid inequalities for the
P (G, k, q) which dominate (3). Moreover, Proposition 5 gives
necessary and sufficient conditions for the new inequalities to
be facet-defining.

Proposition 4: Let uv ∈ E be an edge and i ∈ K. The
inequality

xi
u +

∑
j∈K\{i}

xj
v ≤ 1, (7)

is valid for P (G, k, q).

Proposition 5: The inequality (7) associated with uv ∈ E
and i ∈ K defines a facet of P (G, k, q) if and only if either
q > 1 or G contains an independent set of cardinality greater
or equal to k − 1 in V \ Ñ({u, v}).

We propose an inequality family, hereafter called W -
balanced inequalities, that dominates the balanced inequali-
ties (4) given in the formulation.

Proposition 6: Let W ⊆ V be the set of vertices such that
for all v ∈ W , either |N̄ ′(v)| < q + k − 1 or N̄ ′(v) doesn’t
contain an independent set of cardinality k− 2. The following
inequalities∑

v∈V

xt
v −

∑
u∈V \W

xr
u ≤ q for all t ̸= r ∈ K, (8)

are valid for P (G, k, q).

We now give the necessary and sufficient conditions for
the W -balanced inequalities to be facet-defining.

Proposition 7: Inequalities (8) define facets of P (G, k, q)
if and only if every vertex of W has a degree less than or
equal to n− q − 1.

The linear relaxation of formulation (1)–(6) have a trivial
fractional solution of value n, which is obtained by splitting
each vertex between 2 subsets so as to constraints (3). A
fractional solution of the same value is obtained even if the
model is strengthened by inequalities (7); in the latter case each
vertex is equally split among k subsets. Despite the weakness
of the linear relaxation, the computational experiments of
Section IV show that the strengthened constraints (7) are
effective in helping a Mixed Integer Linear Programming
solver in finding good integer solutions. A formulation with
a stronger linear relaxation is presented in the next section.

III. EXPONENTIAL-SIZE INTEGER LINEAR
PROGRAMMING FORMULATION

In this section, we derive an alternative formulation for
the BVKSP having an exponential number of variables with
respect to the input size. Let S = {S ⊆ V } be the family of
all possible subsets of vertices of V . With every S ∈ S and
every i ∈ K, we associate a binary variable ziS which is equal
to 1 if S corresponds to Vi, and 0 otherwise.

The exponential-size model for the BVKSP reads as fol-
lows:

max
∑
i∈K

∑
S∈S

|S|ziS (9)∑
i∈K

∑
S∈S:v∈S

ziS ≤ 1 ∀ v ∈ V, (10)∑
i∈K

∑
S∈S

auvS ziS ≤ 1 ∀ (u, v) ∈ E, (11)∑
S∈S

ziS = 1 ∀ i ∈ K, (12)∑
S∈S

|S|ziS −
∑
S∈S

|S|zjS ≤ q ∀ i ̸= j ∈ K, (13)

ziS ∈ {0, 1} ∀ i ∈ K, ∀ S ∈ S, (14)

where:

auvS =

{
1 u ∈ S ∨ v ∈ S,

0 otherwise.

The objective function (9) maximizes the sum of the
cardinalities of the selected subsets, i.e, it minimizes the size of
the separator. Constraints (10) impose that each vertex appears
in at most one subset. Constraints (11) impose that no edge
exists between subsets, and (12) impose that exactly one set
is selected for each Vi, i ∈ K. Constraints (13) impose the
partitions to be balanced, and finally, constraints (14) impose
the variables to be binary.

Model (9)–(14) has exponential size, thus we need a col-
umn generation procedure to solve its continuous relaxation.
The model is initialized with a subset of the variables, and then
the additional variables necessary to solve its linear relaxation
are generated by separating the associated dual constraints (see,
e.g., [3] for more details on this topic). Given the values of
the dual variables λ∗

v, γ
∗
i , π

∗
uv, ρ

∗
ij , associated with constraints

(10), (11), (12) and (13), respectively, the separation of a dual
constraint for i ∈ K is to find a subset S∗ ∈ S such that:

∑
v∈S∗

λ∗
v+

∑
(u,v)∈E

auvS∗π∗
uv+γi

∗+|S∗|
∑

j∈K: j ̸=i

(ρ∗ij−ρ∗ji) < |S∗|.

If such a subset exists, the corresponding variable is added
to the linear relaxation of model (9)–(14), and the procedure
is iterated; otherwise, the linear relaxation is optimally solved.

Defining:
b∗i =

∑
j∈K: j ̸=i

(ρ∗ij − ρ∗ji),

the separation associated with i is then to find a set S∗ such
that:

∑
v∈S∗

(λ∗
v + b∗i − 1) +

∑
(u,v)∈E

auvS∗π∗
uv < −γi

∗. (15)

The separation problem associated with i ∈ K can be
tackled as an optimization problem, denoted as SP in the
following. SP can be modeled as a Binary Linear Program
using variables xv , which determine whether vertex v belongs
to S∗, and variables yuv , which model coefficient auvS∗ , i.e.,
the fact then at least one between vertices u and v is in subset
S∗:

xv =

{
1 v ∈ S∗,

0 otherwise,
for all v ∈ V,

yuv =

{
1 u ∈ S∗ ∨ v ∈ S∗,

0 otherwise,
for all (u, v) ∈ E.

The Binary Linear Program for the SP is given by:

max
∑
v∈V

ν∗vxv −
∑

(u,v)∈E

π∗
uvyuv (16)

yuv ≥ xu (u, v) ∈ E, (17)
yuv ≥ xv (u, v) ∈ E, (18)
xv ∈ {0, 1} v ∈ V, (19)
yuv ∈ {0, 1} (u, v) ∈ E, (20)

where:

ν∗v = −λ∗
v − b∗i + 1. (21)

Note that, since πuv ≥ 0, (u, v) ∈ E, and because the
variables xv (v ∈ V) are binary, we do not to have to explicitly
impose the binary condition (20) for the variable vector y.

The SP can be interpreted as follows: given G = (V,E),
a profit ν∗v for each v ∈ V and a penalty π∗

uv ≥ 0 for each
(u, v) ∈ E, the problem aims at selecting the subset of vertices
of maximum profit; if one vertex v is selected, the penalty πuv

associated with edges (u, v) ∈ E is paid.

Without loss of generality, we may assume νv > 0 for
each v ∈ V . Actually, a vertex v with νv ≤ 0 can be removed
together with its incident edges. The penalties associated with
a removed edge, say (u, v), is then summed to the profit νu
of vertex u. We can assume as well that πuv > 0 for each
(u, v) ∈ E, actually, if πuv = 0 we can remove the edge.

Proposition 8: The SP is polynomial-time solvable.

Indeed, the transpose of the constraint matrix of model
(16)–(20) has at most one coefficient of value 1 and one
coefficient of value -1 per column. Thus, it is a totally

unimodular matrix (TUM) . Since the transpose of a TUM is
a TUM, the constraint matrix is TU and the linear relaxation
of the SP has integer optimal solution.

Finally, in order to obtain a stronger linear relaxation of
model (9)–(14), we have to exclude the empty set from the
family of all possible subsets of vertices of V . This can
be obtained by solving the SP up-to n times, each time by
explicitly imposing that one of the n vertices is included the
subset s∗.

A. Branching scheme for the exponential-size formulation

When the optimal solution of the linear relaxation of Model
(9)–(14) is fractional, a branching scheme is necessary in order
to obtain an integer solution.

One option is to branch on the variables of formulation (1)–
(6), i.e., the branching imposes that either a vertex v belongs
to a partition i, or it does not. Thus, if the solution is fractional
it exist i and v such that:

0 <
∑

s∈S:v∈s

xi
s < 1. (22)

Then the branching generates two nodes by imposing either∑
s∈S:v∈s

xi
s = 0, (23)

or ∑
s∈S:v∈s

xi
s = 1. (24)

Proposition 9: The branching scheme is complete.

This branching scheme does not affect the structure of the
SP: in the first case vertex v is no longer available for partition
i, in the latter, vertex v must be included into partition i and it
is no longer available in partitions j ∈ K, j ̸= i. The variables
in Model (9)–(14) which are not consistent with the performed
branching must then be removed.

IV. EXPERIMENTAL RESULTS

In this section, we assess the computational performances
of the formulations discussed in this paper, denoted as the Ba-
sic Model ((1)-(6)), the Strengthen Model ((1),(2),(4)-(6),(7))
and the Exponential-Size Model ((9)-(14)). We first describe
the test problems and then we report the tables’ discussion. The
results we are going to present are preliminary and we plan to
extend the analysis in the journal version of this manuscript.

Test problems. Our primary aim is to investigate the
strength of the different formulations and the dimension of the
problems that could be solved to proven optimality by at least
one of the formulations presented. In addition, two important
parameters are investigated, i.e. k which corresponds to the
number of different partitions and q which is the balanced
coefficient controlling the maximum difference in terms of
cardinality of the different partitions. Precisely, our preliminary
experiments aim at investigating their impact on the CPU time.
In our experiments we decided to test the following values of k
∈ {2,4,6,8,10} and the following values of q ∈ {5, 10}, in their
combinations. We decided to use four different instances from
the DIMACS library , i.e. myciel3, myciel4, myciel15,
miles250. These instances are widely used in the literature

in order to test algorithms and formulations for problems
based on graphs. They are a subset of instances already used
by [1] for their computational tests on the MCVKS (where
k = 2). The dimension of the instances is relatively low, i.e.
the number of vertices goes from 11 to 128 and the number of
edges goes from 20 to 774. Since solving these small problems
is computationally challenging, this fact suggests that the
BVKSP is a particularly difficult combinatorial optimization
problem. In the journal version of the present manuscript we
plan to enlarge the test bed of instances.

Tables’ discussion. We run the tests on a PC with an
Intel(R) Core2 Duo CPU E6550 at 2.33GHz and 2 GB RAM
memory, under Linux Ubuntu 12, 64-bit. In Table I, the
instance features are reported. In addition, we report the model
size, in terms of variables and constraints of the compact for-
mulations respectively. It is worth mentioning that the number
of variables is the same for the Basic and the Strengthen
Formulation; while the number of constraints is lower for the
latter. In the remaining part of this section, we discuss two
sets of experiments aiming respectively at comparing the LP-
relaxation of the different formulations and the computational
behaviour for solving the test problems to proven optimality.

For each run, we set a time limit of 3600 seconds, and
we used CPLEX 12.6 [19] with default parameter settings, for
solving the Basic and Strengthen Model; while we used SCIP
[20] for the Exponential-Size Model. In case the time limit is
reached we report “≥ 1h”. In case of memory limit instead
we report mem .

In Table II we report the comparison between the Basic
and the Strengthened Models. Analyzing the table, it is clear
that a considerable speed up in terms of CPU time can be
achieved using the Strengthened Model. The performance of
both formulations is affected by the number of partitions k,
thing which is not particularly surprising since k has a direct
impact on the size of the formulations themselves. When k =
10 the CPU time considerably increases and for the largest
instance a time limit of one hour is reached. On the contrary
the absolute value of q does not seem to considerably affect
the performances of the formulations.

In Table III we assess the performance of the Exponential-
Size Formulation. We claim from the beginning that this
formulation is still not competitive with the others and the
reason we see is twofold. The implementation tested is still
basic and the used solver is less competitive. In implementing
the Branch-and-Price we used SCIP which is the best non-
commercial solver which allows the direct implementation of
a Column Generation procedure integrated with a Branching
scheme. Despite the implementation is basic, the Exponential-
Size Formulation is able to solve myciel3 and myciel4.
In addition the table stresses the point of strengths of this
formulation, i.e., a stronger the LP relaxation than the one of
the Basic and Strengthen Models, and the fact that the CPU
time is less dependent on the number of partitions k. For these
reasons we hope that an additional effort in improving the
performance of the Exponential-Size Formulation could lead
to improved results, outperforming the Compacts Models at
least for some subclasses of instances.

The entries in the table I are:
Name : name of instance,
n : number of nodes,
m : number of edges,
k : number of sets in the partition,
q : balanced coefficient,
variables : number of variables in the compact formulation,
cons (2), (3), (6) : number of inequalities (2), (3), (6) in the basic formulation,
cons (2), (7), (6) : number of inequalities (2), (7), (6) in the strengthen formulation.

TABLE I. DESCRIPTION OF INSTANCES AND SIZE OF THE COMPACT
FORMULATION

Instance n m k q variables cons (2), (3), (6) cons (2), (7), (6)

m
y
c
i
e
l
3 11 20 2 5 22 32 32

11 20 2 10 22 32 32
11 20 4 5 44 137 97
11 20 4 10 44 137 97

m
y
c
i
e
l
4

23 71 2 5 46 95 95
23 71 2 10 46 95 95
23 71 4 5 92 455 313
23 71 4 10 92 455 313
23 71 6 5 138 1103 464
23 71 6 10 138 1103 464
23 71 8 5 184 2039 619
23 71 8 10 184 2039 619
23 71 10 5 230 3263 778
23 71 10 10 230 3263 778

m
y
c
i
e
l
5

47 236 2 5 94 284 284
47 236 2 10 94 284 284
47 236 4 5 188 1469 997
47 236 4 10 188 1469 997
47 236 6 5 282 3602 1478
47 236 6 10 282 3602 1478
47 236 8 5 376 6683 1963
47 236 8 10 376 6683 1963
47 236 10 5 470 10712 2452
47 236 10 10 470 10712 2452

m
i
l
e
s
2
5
0

128 774 2 5 256 903 903
128 774 2 10 256 903 903
128 774 4 5 512 4778 3230
128 774 4 10 512 4778 3230
128 774 6 5 768 11753 4787
128 774 6 10 768 11753 4787
128 774 8 5 1024 21828 6348
128 774 8 10 1024 21828 6348
128 774 10 5 1280 35003 7913
128 774 10 10 1280 35003 7913

The entries in the table II are:
Name : name of instance,
k : number of sets in the partition,
q : balanced coefficient,
nodes : number of generated nodes in the Branch-and-Bound tree,
CPU : total CPU time in seconds,
|W | : size of node set to improve the balanced inequalities.

V. CONCLUSION

In this paper we investigate different mathematical formu-
lations for the the Vertex k-Equi-Separator Problem, i.e., the
problem of finding a minimum cardinality separator such that
the sizes of the resulting disconnected subsets are balanced.
We present a compact Integer Linear Programming formula-
tion and discuss some possible improvement which brought
to a strengthen model. Then we introduce an exponential-
size formulation, for which we derive a column generation

TABLE II. RESULTS FOR COMPACT FORMULATION

Instances Basic model Strengthen model

Name k q nodes CPU nodes |W | CPU

m
y
c
i
e
l
3 2 5 14 0 12 1 0

2 10 11 0 11 11 0
4 5 82 0 21 11 0
4 10 52 0 13 11 0

m
y
c
i
e
l
4

2 5 47 0 28 0 0
2 10 31 0 31 0 0
4 5 1754 0 182 0 0
4 10 118 0 47 2 0
6 5 2482 1 142 0 0
6 10 281 0 48 7 0
8 5 2340 7 78 1 0
8 10 1685 7 631 13 2

10 5 2465 11 2000 7 6
10 10 2264 13 627 23 2

m
y
c
i
e
l
5

2 5 202 0 283 0 0
2 10 144 0 117 0 0
4 5 18294 26 536 0 1
4 10 32742 37 1543 0 3
6 5 47331 166 1530 0 9
6 10 39642 104 2659 0 23
8 5 379912 2485 3238 0 55
8 10 150598 1061 4275 0 81

10 5 193490 > 1h 16929 0 319
10 10 80910 mem 6366 0 181

m
i
l
e
s
2
5
0

2 5 15 0 9 0 0
2 10 11 0 12 0 0
4 5 3096 24 138 0 4
4 10 3071 22 142 0 4
6 5 3298 85 1674 0 96
6 10 10817 185 428 0 26
8 5 20710 1053 2464 0 343
8 10 16056 606 3018 0 517

10 5 30414 > 1h 25299 0 > 1h
10 10 23371 > 1h 3220 0 1288

The entries in the table III are:
Name : name of instance,
k : number of sets in the partition,
q : balanced coefficient,
LP : value of the LP relaxation,
Gap : the gap between the LP relaxation and the optimal value,
ColLP : number of generated column for the relaxation,
CPU : total CPU time in seconds for the Branch-and-Price,
ColB&P : number of generated column for the Branch-and-Price,
nodes : number of nodes for the Branch-and-Price.

and a branching scheme. Preliminary computational results
comparing the performance of the two formulations on a set
of benchmark instances are reported which give some insight
about the difficulty of the problem and the dimension of the in-
stance which can be solved to proven optimality. We especially
evaluated the effect of the number of partitions on the CPU
time. Future developments include further strengthening of the
compact formulation, as well as testing alternative algorithmic
solutions of the column generation problem (e.g., as a flow
problem) and alternative branching schemes.

REFERENCES

[1] E. Balas and C. de Souza, The vertex separator problem: a polyhedral
investigation, Mathematical Programming, 103(3):583–608, 2005.

TABLE III. RESULTS FOR EXTENDED FORMULATION

Instance k q LP gap ColLP CPU ColB&P nodes

m
y
c
i
e
l
3 2 5 9 22,22 56 0 779 131

2 10 9,7 17,53 52 0 204 32
4 5 6,7 10,45 140 0 146 17
4 10 7,3 17,81 100 0 146 17

m
y
c
i
e
l
4

2 5 18,5 18,92 440 120 13508 215
2 10 20,6 22,33 220 238 18640 321
4 5 16,2 19,75 1024 mem - -
4 10 17,5 8,57 840 308 19437 497
6 5 15,1 13,91 1086 mem - -
6 10 16 0,00 1206 1 544 30
8 5 13,6 4,41 888 9 1687 291
8 10 14,4 9,72 1408 6 1989 113

10 5 12,4 11,29 1350 3 1069 298
10 10 12,7 13,39 1840 3 960 322

[2] A. Bulu, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, Recent
Advances in Graph Partitioning, preprint Cornell University, 2013.

[3] G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors. Column
Generation. Springer-Verlag, Berlin, 2005.

[4] C. de Souza and E. Balas, The vertex separator problem: algorithms and
computations, Mathematical Programming, 103(3):609–631, 2005.

[5] M. Didi Biha and M.J. Meurs, An Exact Algorithm for Solving the Vertex
Separator Problem, Journal of Global Optimization, 49:425–434, 2010.

[6] H. N. Djidjev, Partitioning Planar Graphs with Vertex Cost: Algorithms
and Applications, Algorithmica, 28:51–75, 2000.

[7] C.M. Fiduccia and R.M. Mattheyses, A linear-time heuristic for improv-
ing network partition, In Proceedings of the 19th Design Automation
Conference, 19:175–181, 1982.

[8] N. Garg, H. Saran, and V. V. Vazirani, Finding separator cuts in planar
graphs within twice the optimal, SIAM J. Computing, 35:159–179, 1999.

[9] Y. Kamidoi, S. Wakabayashi, and N. Yoshida, A divide-and-conquer
approach to the minimum k-way cut problem, Algorithmica, 32:262–276,
2002.

[10] G. Karypis and V. Kumar, A fast and high quality multilevel scheme
for partitioning irregular graphs, SIAM Journal on Scientific Computing,
20:359-392, 1998.

[11] G. Karypis and V. Kumar, Multilevel k-way Partitioning Scheme for
Irregular Graphs, Journal of Parallel and Distributed Computing, 48:96–
129, 1998.

[12] G. Karypis and V. Kumar, Parallel Multilevel k-way Partitioning Scheme
for Irregular Graphs, SIAM Review, 41:278–300, 1999.

[13] B. W. Kernighan and S. Lin, An Efficient Heuristic Procedure for
Partitioning Graphs, The Bell System, Technical Journal, 49(1):291-307,
1970.

[14] R. J. Lipton and R.E. Tarjan, A Separator Theorem for Planar Graphs,
SIAM J. Appl.Math., 36:177–189, 1979.

[15] S. Martin, Analyse structurelle des systèmes algébro-différentiels condi-
tionnels : complexité, modèles et polyèdres, PhD Thesis, Paris Dauphine
University, 2011.

[16] A. Pothen, Graph partitioning algorithms with applications to scientific
computing, In Parallel Numerical Algorithms, Kluwer Academic Press,
1996.

[17] P. Sanders and C. Schulz, Engineering Multilevel Graph Partitioning
Algorithms, In 19th European Symposium on Algorithms (ESA), volume
6942 of LNCS, pages 469-480, Springer, 2011.

[18] C. Walshaw, Multilevel Refinement for Combinatorial Optimisation
Problems, Annals of Operations Research, 131(1):325-372, 2004.

[19] http://ampl.com/products/solvers/solvers-we-sell/cplex
[20] http://scip.zib.de/

